
J .  Fluid M w h .  (1982), i d .  123, p p .  5%68 

Prin.fed i n  Chat Britain 

59 

Path-integral methods for turbulent diffusion 

By I. T. D R U M M O N D  
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW 

(Received 15 October 1981 and in revised form 5 April 1982) 

We derive a path-integral representation for the effective diffusion function of a 
passive scalar field. We use it to calculate the long-time effective diffusivity in 
Gaussian turbulence in the near-Markovian limit. Our results confirm the negative 
effect of vorticity predicted by previous discussions. They also demonstrate that the 
helicity of the turbulence when present may be as important an influence as the 
vorticity . 

1. Introduction 
In  this paper we show how path-integral techniques may be used to study the 

problem of turbulent diffusion. Since the underlying problem is one involving the 
statistical distribution of paths it seems natural and appropriate to approach it in 
this way. As their use in quantum mechanics (Feynman & Hibbs 1965), random media 
(Flatte 1979) and diffusion problems (Onsager & Machlup 1953; Graham 1977) has 
shown, path integrals not only provide considerable insight but are often effective 
and convenient computational tools as well. 

The plan of the paper is as follows. First we introduce, in an appropriate form, the 
path integral for a passive scalar field subject to molecular diffusion and convection 
in a given velocity field. We then obtain a representation for the effective diffusion 
function (EDF) for a turbulent flow by averaging over an appropriate ensemble of 
velocity fields. 

As an application of the representation we study the effective long-time diffusivity 
for Gaussian turbulence in the near-Markovian limit. (Kraichnan 1968 ; Phythian & 
Curtiss 1978; Knobloch 1977, 1980). Although this limit does not correspond directly 
to physical turbulence the results are nevertheless of interest. In  particular they 
exhibit the effect of helicity on the turbulent dispersion. 

2. Path-integral solution of the diffusion equation 
The equation that governs the evolution of a temperabure distribution or chemical 

concentration B(r, t )  subject to diffusion and convection by an incompressible fluid 
is 

(2.1) 
ao 
at 
- + U . vo = K v 2 8 ,  

where the velocity field of the fluid is u = u(x, t )  and the molecular diffusivity is K .  

We have also 
v . u  = 0. ( 2 . 2 )  

F L M  123 3 



60 I. T. Dru,mmond 

Equation (2.1) has the following path-integral solution (Onsager & Machlup 1953 
Feynman & Hibbs 1965; Graham 1977): 

(2.3 

which satisfies G(x, t’lx’, t ’ )  = 6(~-x’ ) .  (2.4) 

In  (2.3) d[x] stands for the measure on the set of paths (x(7)) over which we integrate. 
These paths satisfy x(t’) = X’ and ~ ( t )  = X. 

It is useful both for clarity and subsequent development to  recall the definition 
of the path integral. We select, a sequence of times {to = t ‘ ,  t,, . . . , t, ,  t,+, = t } ,  where 

t ,  = t’+k ( I  = 0,1,  . . . , n+ 1). 

and 6 = (t-t’)/(,n+ 1) .  The path x(7) is now approximated by a sequence of points 
{xo = x’, x,, . . . , x,, x,+~ = x} and the exponent in the integrand of (2.3) is approxi- 
mated by the sum 

8, = 1=0 2 F[xi+1e-xLUz]2, (2.5) 

(2.6) where 

and <, is chosen to lie somewhere on the line joining xz to x ~ + ~ .  In  the present case 
for which V . u = 0 the precise method for choosing t1 does not influence the result, 
although in general it will. I n  the case of compressible flow, then, we would have to 
exercise more care in using the path integral. 

u1 = l G , ? ~ l ) 3  

The measure over the paths is approximated by (Feynman & Hibbs 1965) 

where 

Equation (2.31, then, is to be interpreted as meaning 

(2.9) 

When the fluid is at rest and u vanishes the integral in (2.9) is easily evaluated, 
and yields the standard result 

(x-x’)2 
G = G,(xtlx’t‘) E (47r~(t--t‘))-# exp 

4K(t-t’)’ 
(2.10) 

Although the path-integral representation in (2.3) is already quite useful it suffers 
from the disadvantage that some of the K-dependence is buried in the measure d[x]. 
It, is more convenient therefore to introduce a modified representation in which the 
K-dependence is completely explicit. This new representation has the additional 
advantage that the u-dependence of the exponent in the integrand is linear rather 
than quadratic. 

To derive this new representation we introduce a sequence of variables po, pl, . . . , pn 
and make use of the identity 

(2.11) 
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Combining (2.11) with (2.5) and (2.9) we find that 

exp { -io a[xp;-ip,. (xE+1-x2-uz)]}. (2.12) 
E 

This limit can now be interpreted as a double path integral, with the result 

G(xt1x’t’) = d[x] d[p] exp { -I:, d ~ [ ~ p ~ ( ~ ) - i p ( T ) .  (X(7)-U(X(T),7)]  s 
where now the measures are 

n 

d[x] - 2-1 fl d3x,, (2.14) 

(2.15) 

The x-integral is over the same paths as before, while the p-integral is over all paths 
in p-space defined on the range t’ < T < t with no restriction a t  the end points. It 
is interesting to  note that the representation for the EDF in (2.13) bears the same 
relation to the original one in (2.3) as the canonical path integral in quantum 
mechanics bears to the Lagrangian path integral of Feynman & Hibbs (1965). 

3. The effective diffusion function 

The effective diffusion function (EDF) is given by 

%(x, tlx’, t ’ )  = (G(x, tlx’, t ’ ) ) ,  (3.1) 

where ( A )  represents the expectation value of A over the ensemble of velocity fields 
representing the turbulence. Equation (2.13) then yields the following path-integral 
representation for 9 : 

9 ( x ,  tlx’, t ‘ )  = d[x] d[p] exp { - I t :  d7[xp2(~)-ip(7) .X(7)]} I 
x (exp { - i 1: d7 p(7). U(X(T), 7)}). (3.2) 

The expectation value in (3.2) is just a special case of the generating functional 
for the Eulerian correlation functions of the velocity field. We can recover the 
standard perturbation theory for (2.1) by expanding the exponential in powers of the 
velocity field. 

In  the case of Gaussian turbulence we can evaluate the expectation value in terms 
of t>he two-point correlation function (assuming (u) = 0) and obtain the result 

where 
(3.4) 

Even in the case of Gaussian turbulence, then, the evaluation of 9 is a non-trivial 
problem because of the path dependence of Aij. 

3-2 
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One circumstance in which this dependence is suppressed is the Markovian limit, 
in which we can make the approximation 

(Ui(X, t )  Uj(X’, t ’ ) )  = Di j (x -x ’ )  8( t - t ’ ) ,  

where m 

D ~ ~ ( x - x ’ )  = d7 ( u ~ ( x ,  7 )  u ~ ( x ’ ,  0)). s-, 
We have assumed homogeneity and time independence for the turbulence. 

(3.7) 
It follows that 

That is 

If we assume isotropy for the turbulence then 

Dij(0) = +sij D, (3.9) 
where 00 

D = Dii(0) = d7 ( u ( 0 , ~ ) .  u(0,O)). (3.10) I, 
We find that the path-integral representation for the EDF takes the form 

9 ( x ,  tlx’, t ’ )  = d [ x ]  d [ p ]  exp { - (K++D) [, d7 p 2 ( 7 )  + i 1, d7 p ( 7 ) .  x(7) s 
The EDF is then just a simple diffusion function with an effective diffusivity of K +go. 

As has been pointed out (Kraichnan 1968; Phythian & Curtiss 1978) the Markovian 
limit imposes an unrealistic constraint on the turbulence in which the velocity- 
correlation time is very much smaller than the eddy-circulation time. It is important 
therefore to consider corrections to the Markovian limit. We calculate these to lowest 
order in $4. 

4. Corrections to the Markovian limit 

function as a Taylor series in position. That is 
Corrections to  the Markovian limit are obtained by first expanding the correlation 

( U i ( X ,  7) Uj(X’, 7’)) = g8,,(U(o, 7 )  . U(O57’)) 

+Aij ,k(717’)  ( ~ - ~ ’ ) k + i A i j , k z ( ~ l ~ ’ )  (X-x’), (x-x’),+ . . . . (4.1) 

In  writing the first term in this expansion we have used the assumed isotropy of the 
turbulence. We also have 

Aij,,(717’) = @(TIT’) cijk, (4.2) 

(4.3) 
where 

w being the vorticity of the fluid, and 

h(717’) = ( 0 ( 0 , 7 ) .  U ( 0 ,  T ’ ) ) ,  

A i j , k ~ ( W )  = hG’(7I7’) (6,18j, + s i k 8 j ~ - 4 8 i j s k l ) 3  (4.4) 

 TIT') = ( 0 ( 0 , 7 ) .  0 (0 ,7 ’ ) ) .  (4.5) 
with 

Our approximation procedure is to treat the first term of the expansion in (4.1) 
exactly and the remaining terms perturbatively. The justification for this is the 
assumption that we are near the Markovian limit, in which the effect of these 
remaining terms disappears. 
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The expression for the EDF is then 

where 
f (d7 ’ )  = 6~8(7 -7 ’ )+  ( u ( 0 , ~ )  . u(O, 7’)). (4.7) 

We have truncated the expansion so as to retain all those terms that involve up to 
two spatial derivatives of the correlation function. 

Considerations of reflection symmetry tell us without further calculation that the 
first term, which contains only a single power of Aij ,k ,  will not contribute to the result. 
The next two terms provide the first non-vanishing corrections. We will refer to them 
as respectively the vorticity and helicity corrections. 

The various terms in the expansion for the EDF can be obtained from the 
functional 

which is evaluated in the appendix. For example the lowest approximation is 

90(x, tlx’, t ’ )  = I[O, 01. 

Referring to the appendix we see that this is 

where 

1 ( x  - x’)2 
%o(x, tlx’, t’)  = ~ ( 2 m ) b ;  {-TI? 

The vorticity correction can be expressed as 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
64 

where 
I . .  = 

s U i ( 7 )  s V j ( 7 ‘ )  8pk(7”) 8qz(7“‘) alkl 

Ultimately this may be expressed as 

(4.13) 
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where l t  
T(7’’) = 5 It,  d7f(717‘’). 

The helicity correction can be expressed as 

(4 .14 )  

(4 .16 )  (I ‘ 

where 66 

Ultimately this can be put in the form 

SUi (71 )  6t7j(7i) &k(71) 6’%(72) 6Vm(7;)  ‘%fi(7;) I.‘-q-o 
I i jk lmn = - 

1 
89h = - N g o [ ( x - x ‘ ) 2 - 3 c ; ] ,  (4 .17)  

1 su; 
where 

N = J’:, d71 J‘ d72 JI d7; JTy d7; h ( ~ ~ 1 7 ; )  h ( ~ ~ 1 7 ; ) .  

J d3x 89@ = S d3x Mk = 0, 

(4 .18 )  

It is easily verified that 
(4 .19)  

so that two corrections do not alter the overall normalization of 9. 
The lo-west approximation to the dispersion is 

(xz)o = 3 4 ,  (4 .20 )  

and the lowest approximation to the fourth moment is 

((Xz)2)>o = 1 5 ~ : .  (4 .21 )  

The effect of the vorticity correction is, for the dispersion, 

l t  
6(X2), = -< J’ d7d7’ [ d7“d7“‘ g(~17’)f(~”17’’’), (4 .22)  

t’ T’ 

and for t’he fourth moment, 

S ( ( X 2 ) 2 ) ,  = -- u* J’:, d7d7‘ f, d71’d7111 g(717’) j (~”17 ’” )  

while the helicity correction yields 

6 ( x 2 ) h  = gN, (4.24)  

6( ( X y )  = y u; N .  (4 .25 )  

The results imply that, within the approximation employed, the flatness factor M 
(Kraichnan 1970) is given by 

Note that the helicity correction does not’ influence the behaviour of R. 
At short times we find 

6(X2), % - ~ K W 2 ( f - t t ’ ) 3 - & W 2 U 2 ( t - t ’ ) 4 + .  . ., (4 .27 )  

6(x2)h x # 2 ( t - ! ’ ) 4 ,  (1 .28)  
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where h = h(OJO), and 
R x ~(l-&p’(t-t’)’) (4.29) 

The first term in (4.27) is consistent with the work of Saffman (1960), the terms 
O(( t -  t’)4) can also be, confirmed when K = 0, by a Taylor expansion in time. Equation 
(4.29) is interesting because it is independent of the molecular diffusivity. Again it 
is easily verified for Gaussian turbulence when K = 0. 

At large times we have 
co 

8(x2), W -;(t--t’) (4.30) -“ 

where 

(4.32) 

(4.33) 

Note that the vorticity correction continues to reduce the dispersion while the 
helicity correction remains positive. 

All of these results are of course consistent with the original hypothesis of Taylor 
(1921) that a t  large times turbulent dispersion is controlled by an effective diffusivity. 

5. A specific case and conclusions 

diffusivity controlling the long-time behaviour of the EDF is 
Summarizing the results of the previous sections we find that the effective 

1 “  1 “  
h’,ff = K+- s d7(U(O, 7) . U ( 0 , o ) )  -- d ~ ( a ( 0 , ~ ) .  0 ( 0 , 0 ) )  ci(7) 

6 -03 12 

where 
(5 .2)  

It is interesting to evaluate these results in a simple model. For simplicity we 
assume a11 correlation functions have the same time dependence, namely 

( u ( O , T ) .  u(O,7’)) = u2e-*17-T‘1, 

( 0 ( 0 , 7 ) .  o ( O ,  7’)) = w%-* lT-T ‘ l ,  

( 0 ( 0 , 7 ) .  u(O, 7 ’ ) )  = awwe-*I~-~’l. (5.3) 

For this model the velocity correlation time is 7, = S2-1 and the eddy circulation 
time is 7, = @-I. Hence the ratio 7,/7, = w / Q ,  so we are concerned with the limit 
of small vorticity. We readily find then that, for 7 > 0, 
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and that 

From (4.33) we sw also that the characteristic timescale 1', in which the EDF returns 
to a Gaussian shape, is given by 

that is 
(5.7) 

In this model then, the EDF evolves towards a standard Gaussian diffusion 
function in three stages. The first stage owupies a time interval 0 < t- t '  < 7' 6 7,. 

During this stage R lies below its standard valuc of 8, indicating that the EDF is more 
sharply peaked than a Gaussian shape with the same dispersion. The initial decrease 
of R from 8 is proportional to w2( t - t ' )2 .  Towards the end of this stage R increases 
again towards 5 and the E D F  attains a Gaussian shape. During this increase the 
departure of R from its limiting value is proportional to ?' / ( t - t ' ) .  

The second stage lies in the time interval T < t--f' 5 rt,.  During this stage, while 
the EDF has a Gaussian shape, the dispersion evolves in time in a way that reflects 
thc tlctails of the time dependence of the velocity correlation function. 

The third stage owupies the time interval r ,  < t-t' < rxi. Now the EDF is not only 
Gaussian in shape but also the dispersion increases linearly with time. In  this stage 
then the EDF satisfies the standard diffusion equation 

with Keff given by (7.5). 
Clearly for more realistic values of r,/r, we have T - r,, so the above picture must 

be a t  least partly modified. The first stage for example will clearly ovcrlap and will 
not be readily distinguishable from the second stage. However, i t  seems plausible that 
mrtain qualitative features will remain. These are the following. 

( i )  The initial time dependence of R. This can in any case be established quite 
generally. 

(i i)  The final time dependence of R. It is highly likely that the estimate of Twill 
be affected by higher corrections. However, i t  is difficult to see how the fact that 

8- R = O((t--L')-') 

will be altered. The significant point is that  this quantity has an inverse rather than 
for example, an exponential dependence on time. 

( i i i )  The fact that the helicity when present may be just as important as the 
vorticity in determining the effective long-time diffusivity. This possibility has not 
been generally emphasised, although similar squared helicity effects have been 
discussed for magnetic and scalar fields in the context of numerical calculations 
(Kraichnan 1976, 1977). There too the effect of helicity on the effective diffusivity 
is positive. Equation (7.5) indicates that while the helicity modifies the lower-ordcr 
estimate of eddy diffusivity i t  does not interact with the molecular diffusivity as does 
thc vorticity. It is therefore of particular importance when molecular diffusivity is 
low or absent. 

(iv) The fact that the expressions for thc long-time diffusivity in (7.1) and (7.5) 
are entirely in line with previous arguments (Saffman 1960) and calculations 
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(Kraichnan 1970, Phythian & Curtis 1978) in t’hat they suggest that the interaction 
of molecular diffusivity and vorticity is such as to provide a negative contribution 

Finally, on the path-integral technique itself we would like to remark that we feel 
we have shown that it can be a useful way of approaching the problem of turbulent 
diffusion. Insofar as it is used, as here, to derive a perturbation series for the quantities 
of interest it could be circumvented by other, perhaps more familiar, techniques. 
However, the path-integral representation for the EDF is very flexible, and can 
provide a natural starting point, for many different kinds of calculation. 

t’0 Kerf .  

Appendix 

perturbation series for %(x, tlx’, t ’ ) .  It is 
We evaluate the moment-generating functional used to calculate terms in the 

Now introduce a randomly fluctuating vector w(T), which obeys Gaussian statistics 
and has a correlation function 

We have 
(A 2) 

exp { -f {: d ~ d ~ ’ p ( 7 ) .  P(T’)~(T~T’)} = ( exp {-i [, d7 p(7) .a(.)}) . (A 3) 
W 

It follows that 

If we shift the p-integration variable so that 

then we find 
P(7) + P(7) + q(7)t 4 P l  + 4 P l  

That is 

where 

S o w  introduce the standard representation for the S-function so that’ 

exp {ik . (x-x’)) ( exp { - i I:, d ~ L q ( 7 )  + k]  . ~ ( 7 ) ) )  
d3k 

W 
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We find, using the property of Gaussian statistics, that 

I[v,q] = ~ m e x p { - ~ ~ ~ k 2 } e x p { i k . ( x - x ’ - R + i Q ) }  d3k 

On evaluating the Fourier transform we obtain finally 

- i j:, d7 q(7) . v(7) 1 (X - X’ - R + iQ)2 
~ [ v ,  ql = 7 exp { - (2n)zflo 2 4  

-! 6 jd7d7 ‘  q(7) .q(7’)f(717’) 1 . (A 11) 
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